LETTERS 2012 Vol. 14, No. 1 218–221

ORGANIC

Parallel Kinetic Resolution of Acyclic $γ$ -Amino-α, $β$ -unsaturated Esters: Application to the Asymmetric Synthesis of 4-Aminopyrrolidin-2-ones

Stephen G. Davies,* James A. Lee, Paul M. Roberts, James E. Thomson, and Jingda Yin

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

steve.davies@chem.ox.ac.uk

Received November 8, 2011

Conjugate addition of a 50:50 pseudoenantiomeric mixture of lithium (R) -M-benzyl-N-(α -methylbenzyl)amide and lithium (S)-N-3,4-dimethoxybenzyl-N-(α-methylbenzyl)amide to a range of racemic acyclic γ -amino-α,β-unsaturated esters (derived from the corresponding α -amino acids) effects their efficient parallel kinetic resolution, allowing the preparation of enantiopure $β,γ$ -diamino esters. The $β,γ$ -diamino ester products of these reactions are readily converted into the corresponding substituted 4-aminopyrrolidin-2-ones via N-debenzylation and cyclization.

Kinetic resolution is a venerable concept within organic chemistry. It was first observed by Marckwald and McKenzie in 1899, during the esterification of racemic mandelic acid with $(-)$ -menthol.¹ Such is the importance of kinetic resolution that over 100 years later it, together with dynamic kinetic resolution $(DKR)^2$ and parallel kinetic resolution (PKR) ,³ is employed widely in the preparation of enantiomerically pure materials on both laboratory and industrial scales. We have previously developed the PKR of a range of chiral 3- and 5-substituted cyclopent-1-enecarboxylates, and 6-substituted cyclohex-1-enecarboxylates using a 50:50 pseudoenantiomeric mixture of enantiopure lithium amides.⁴ This protocol has thus far been limited to these cyclic α , β -unsaturated esters due to the requirement for high levels of substrate control. In this manuscript we report the efficient PKR of racemic acyclic N-protected γ-amino-α, β -unsaturated esters (which exhibit very high levels of substrate control) using a 50:50 pseudoenantiomeric mixture of lithium (R) -N-benzyl-N- $(\alpha$ -methylbenzyl)amide and lithium $(S)-N-3$,4-dimethoxybenzyl- $N-(\alpha$ -methylbenzyl)amide. The enantiopure

⁽¹⁾ Marckwald, W.; McKenzie, A. Ber. Dtsch. Chem. Ges. 1899, 32, 2130.

⁽²⁾ Pellissier, H. Tetrahedron 2003, 59, 8291. Pellissier, H. Tetrahedron 2008, 64, 1563.

⁽³⁾ Eames, J. Angew. Chem., Int. Ed. 2000, 39, 885. Dehli, J. R.; Gotor, V. Chem. Soc. Rev. 2002, 31, 365.

⁽⁴⁾ Davies, S. G.; Díez, D.; El Hammouni, M. M.; Garner, A. C.; Garrido, N. M.; Long, M. J. C.; Morrison, R. M.; Smith, A. D.; Sweet, M. J.; Withey, J. M. Chem. Commun. 2003, 2410. Davies, S. G.; Garner, A. C.; Long, M. J. C.; Smith, A. D.; Sweet, M. J.; Withey, J. M. Org. Biomol. Chem. 2004, 2, 3355. Davies, S. G.; Garner, A. C.; Long, M. J. C.; Morrison, R. M.; Roberts, P. M.; Savory, E. D.; Smith, A. D.; Sweet, M. J.; Withey, J. M. Org. Biomol. Chem. 2005, 3, 2762. Aye, Y.; Davies, S. G.; Garner, A. C.; Roberts, P. M.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 2195. Abraham, E.; Davies, S. G.; Docherty, A. J.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Thomson, J. E.; Toms, S. M. Tetrahedron: Asymmetry 2008, 19, 1356. Davies, S. G.; Durbin, M. J.; Hartman, S. J. S.; Matsuno, A.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E.; Toms, S. M. Tetrahedron: Asymmetry 2008, 19, 2870.

 β , *γ*-diamino ester products of these reactions are valuable building blocks for further elaboration, as demonstrated by their facile conversion to the corresponding substituted 4 aminopyrrolidin-2-ones.

A range of racemic acyclic N-protected γ -amino- α , β -unsaturated esters was prepared from the corresponding racemic α -amino acids (\pm)-1-7 using a modification of the procedure reported by Reetz and co-workers.⁵ Exhaustive benzylation of (\pm) -1-7 was achieved upon treatment with BnBr in boiling aq K_2CO_3 to give (\pm)-8-14 and was followed by reduction with $LiAlH₄$ to give the corresponding N,N-dibenzyl protected α -amino alcohols (\pm)-15–21. Swern oxidation of α -amino alcohols (\pm)-15–21 and olefination of the resultant aldehydes then gave the desired α ,β-unsaturated esters (\pm)-22-28 in 18-57% overall yield (Scheme 1).

Scheme 1

When investigating PKR ,⁴ we have promulgated that it is prudent to follow a strategy of first investigating the levels of substrate control offered by the chiral α, β unsaturated ester upon conjugate addition of an achiral lithium amide, viz. lithium N-benzyl-N-isopropylamide 29. The levels of enantiorecognition between the chiral α, β unsaturated ester (substrate) and lithium N-benzyl-N- $(\alpha$ methylbenzyl)amide 30 (chiral reagent) are then evaluated by investigation of their mutual kinetic resolution (MKR), i.e., addition of racemic lithium amide (\pm) -30 to racemic α , β -unsaturated ester. This approach eliminates any complicating effects of mass action and allows the maximum levels of enantiodiscrimination (as quantified by the factor, E^{6} to be very simply determined by analysis of the product distribution by ¹H NMR spectroscopy. Finally, having identified those substrates that undergo efficient MKR upon addition of racemic lithium amide (\pm) -30, their PKR employing a 50:50 pseudoenantiomeric mixture of enantiopure lithium N -benzyl- N - $(\alpha$ -methylbenzyl) amide 30 and enantiopure lithium N-3,4-dimethoxybenzyl-N- $(\alpha$ -methylbenzyl)amide 31 may be performed. We therefore adopted this approach to investigate the potential of racemic γ-amino-α,β-unsaturated esters (\pm)-22–28 as substrates for our PKR protocol.

Addition of 1.6 equiv of lithium amide 29 to (\pm) -22-26 resulted in >95% conversion to the corresponding $β, γ$ -diamino esters (\pm)-32-36 (\geq 88:12 dr in all cases), indicating high levels of substrate control. Chromatographic purification allowed isolation of β , *γ*-diamino esters (\pm)-32-36 in 60 -86% yield and in \geq 97:3 dr (Scheme 2). The relative 3,4syn-configuration within (\pm) -34 (R = Bn) was unambiguously established by single crystal X-ray diffraction analysis of the corresponding hydrochloride salt (\pm) -34•HCl. The relative 3,4-syn-configurations within (\pm) -32, (\pm) -33, (\pm) -35, and (\pm) -36 were assigned by analogy.⁷ Meanwhile, (\pm) -28 proved recalcitrant to addition of lithium amide 29, even over extended reaction times and when the amount of lithium amide was increased from 1.6 to 10 equiv. Addition to (\pm) -27 proceeded with low levels of substrate control to give a 27:73 mixture of 3,4-syn-37:3,4-anti-43, which were isolated in 15 and 48% yield as single diastereoisomers (>99:1 dr). The relative 3,4 anti-configuration within 43 was unambiguously established by single crystal X-ray diffraction analysis, which therefore allowed the relative 3,4-syn-configuration within 37 to be assigned unambiguously (Scheme 2).

Previous investigations concerning conjugate addition of a range of nucleophiles to α , β -unsaturated carbonyl compounds with a stereocenter at the γ -position often invoke a modified Felkin-Anh model to rationalize the

⁽⁵⁾ Reetz, M. T.; Röhrig, D. Angew. Chem., Int. Ed. Engl. 1989, 28, 1706.

⁽⁶⁾ Horeau, A. Tetrahedron 1975, 31, 1307.

⁽⁷⁾ Comparison with the substrate control elicited in the MKR of (\pm)-22-26 with lithium amide (\pm)-30, as well as in the PKR of (\pm)-22-26 with lithium amides (R) -30 and (S) -31, allows these configurational assignments to be made confidently. In addition, the relative configurations within β , γ -diamino esters (\pm)-36 and (\pm)-42 [and (3S,4R, α R)-48] were subsequently unambiguously established by single crystal X-ray diffraction analysis of a cyclic derivative; see the Supporting Information for full experimental details.

⁽⁸⁾ Yamamoto, Y.; Chounan, Y.; Nishii, S.; Ibuka, T.; Kitahara, H. J. Am. Chem. Soc. 1992, 114, 7652. Kireev, A. S.; Manpadi, M.; Kornienko, A. J. Org. Chem. 2006, 71, 2630.

observed diastereoselectivity.8 However, one other simplistic model (not dissimilar to a Felkin-Anh model) which is able to rationalize successfully the experimental data in this case uses insight obtained from single crystal X-ray diffraction analysis of α , β -unsaturated ester (\pm)-22. This revealed a solid state conformation in which the C(4) hydrogen atom lies almost perpendicular to the plane of the α , β -unsaturated system, with the bulky C(4)-N,N-dibenzylamino substituent occupying the less hindered "outside" position and the C(4)-methyl group in the more hindered "inside" position (Figure 1). Conjugate addition of lithium amide 29 to (\pm) -22 in this conformation would be predicted to occur on the least hindered face past the "small" hydrogen substituent to give (\pm) -3,4-syn-32, as observed experimentally. A similar analysis applied to α , β -unsaturated esters (\pm)-23-26 (R = Et, Bn, 'Bu, CH₂OBn) would also successfully rationalize the observed substrate diastereofacial control, leading to (\pm) -3,4-syn-33-36. However, increased steric bulk of the C(4)-substituents in α , β -unsaturated esters (\pm)-27 and (\pm)-28 would serve to disfavor analogous conformations, thereby providing a rationale for their differing behavior. Presumably, the very large steric congestion around C(4) in the case of (\pm) -28 $(R = 'Pr)$ precludes addition of the sterically demanding lithium amide to C(3) completely.

Figure 1. Chem 3D representation of the single crystal X-ray diffraction structure of (\pm) -22 [(S)-enantiomer depicted; selected H atoms are omitted for clarity], and Newman projection along the $C(3)-C(4)$ bond.

The extent of enantiorecognition between α , β -unsaturated esters (\pm) -22-26 (which offered high levels of substrate control) and lithium amide (\pm) -30 was next investigated, with high levels of enantiorecognition being expected. Indeed, addition of 1.6 equiv of lithium amide (\pm) -30 to (\pm) -22-26 gave, in each case, essentially a single diastereoisomeric product $44-48$ in $\geq 95:5$ dr, indicating very high levels of enantiorecognition between substrate and reagent, and consistent with $E \ge 19^6$ in each case. Purification facilitated isolation of diastereoisomerically pure ($> 99:1$ dr) samples of (\pm)-44-48. The relative $(3RS, 4RS, \alpha SR)$ -configurations within (\pm)-45 and (\pm)-47 were unambiguously established by single crystal X-ray diffraction analyses, and therefore the relative configurations within (\pm) -44, (\pm) -46, and (\pm) -48 were assigned by analogy. It is notable that the relative configurations of the C(3)- and C(α)-stereogenic centers within both (\pm)-45 and

Scheme 3

 a 70% of a sample of 46 in 95:5 dr was also isolated.

 (\pm) -47 [and, hence, (\pm) -44, (\pm) -46, and (\pm) -48] are in accordance with that predicted by the transition state mnemonic developed by us to rationalize the exceptional facial bias of this class of lithium amide.⁹ This reagent control, when combined with that of the α , β -unsaturated ester (substrate control: production of the 3,4-syn-diastereoisomer favored), results in very highly selective reactions. These results suggest that α , β -unsaturated esters (\pm) -22-26 are viable substrates for our PKR protocol⁴ (Scheme 3).

The PKR of α , β -unsaturated esters (\pm)-22-26 using a 50:50 pseudoenantiomeric mixture of lithium amides (R)- 30 (2 equiv) and (S) -31 (2 equiv) was next investigated. These reactions produced, in each case, a 50:50 mixture of the corresponding (αR) -adducts 44-48 in \geq 95:5 dr and the (αS) -adducts 49–53 in \geq 95:5 dr. Facile separation and purification via flash column chromatography allowed isolation of (αR) -44-48 in >99:1 dr and 31-42% yield and (αS) -49-53 in >99:1 dr and 40-43% yield. In each case, the product of addition of lithium amide (R) -30 was spectroscopically identical to the major diastereoisomer formed in the corresponding MKR reaction. Additionally, the relative configuration within β , γ -diamino ester 49 was unambiguously established via single crystal X-ray diffraction analysis, with the absolute $(3R, 4R, \alpha S)$ -configuration being assigned from the known (S) -configuration of the α -methylbenzyl stereocenter. Given the pseudoenantiomeric nature of lithium amides (R) -30 and (S) -31, this analysis

⁽⁹⁾ Costello, J. F.; Davies, S. G.; Ichihara, O. Tetrahedron: Asymmetry 1994, 5, 1999. For a review, see: Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry 2005, 16, 2833.

⁽¹⁰⁾ Hoang, C. T.; Bouillère, F.; Johannesen, S.; Zulauf, A.; Panel, C.; Pouilhès, A.; Gori, D.; Alezra, V.; Kouklovsky, C. J. Org. Chem. 2009, 74, 4177.

⁽¹¹⁾ In the case of β , γ -diamino ester **48**, the yield of the corresponding 4-aminopyrrolidin-2-one 68 (60% isolated yield) was somewhat compromised by the formation of methyl (3S,4R)-3,4-diacetamido-5-hydroxypentanoate 69 (25% isolated yield). This presumably arises from competing lactone formation (rather than lactam formation) from 58 under the reaction conditions, followed by methanolysis upon workup of the acetylation procedure.

Scheme 4 Scheme 5

also allows the assigned relative $(3RS, 4RS, \alpha SR)$ -configuration within racemic 44 to be unambiguously confirmed, with the absolute $(3S, 4S, \alpha R)$ -configuration within enantiopure 44 following from the known (R) -configuration of the α -methylbenzyl stereocenter. By similar reasoning, given the known relative configurations within racemic 45 and 47, the absolute $(3S, 4S, \alpha R)$ -configurations within enantiopure 45 and 47 may be assigned from the known (R)-configuration of the α -methylbenzyl stereocenter. Hence, the absolute $(3R, 4R, \alpha S)$ -configurations within 50 and 52 can be unambiguously assigned. The absolute $(3R, 4R, \alpha S)$ -configurations within 51 and 53 were assigned by analogy (Scheme 4).

With a range of enantiopure β , γ -diamino esters in hand, their synthetic utility was demonstrated by elaboration of 44-48 to the corresponding 5-substituted 4-aminopyrrolidin-2-ones. Hydrogenolytic N -debenzylation of $44-48$ was followed by acid-promoted cyclization 10 to the corresponding 4-aminopyrrolidin-2-ones $59-63$, which were isolated as their acetate derivatives $64-68$ in $60-78\%$ yield over three steps. 11 The absolute configurations within $64-68$ were assigned from the known absolute

^a Yield over 3 steps. ^bFor **48**, R^{\prime} = Bn; for **58** and **63**, R^{\prime} = H; for **68**, $R' = Ac$.

configurations of the precursor β , *γ*-diamino esters **44–48**; ¹H NMR NOE analyses of $64-68$ were also supportive of a relative 4,5-syn-configuration (Scheme 5).

In conclusion, conjugate addition of a 50:50 pseudoenantiomeric mixture of lithium (R) -N-benzyl-N- $(\alpha$ -methylbenzyl)amide and lithium (S)-N-3,4-dimethoxybenzyl- $N-(\alpha$ -methylbenzyl)amide to a range of racemic acyclic $γ$ -amino-α, $β$ -unsaturated esters (derived from the corresponding α -amino acids) effects their efficient parallel kinetic resolution, allowing the preparation of enantiopure β,γ-diamino esters. The β,γ-diamino ester products of these reactions are readily converted into the corresponding substituted 4-aminopyrrolidin-2-ones via N-debenzylation and cyclization. Further applications of this methodology are currently under investigation within our laboratory.

Acknowledgment. The authors would like to thank the EPSRC and SCI-Ink for a Dorothy Hodgkin Postgraduate Award (J.Y.).

Supporting Information Available. Experimental procedures, characterization data, copies of ¹H and ¹³C NMR spectra, and crystallographic information files (for structures CCDC 852571 -852577). This material is available free of charge via the Internet at http://pubs.acs.org.